

CRITERION II – TEACHING-LEARNING AND EVALUATION 2.6 STUDENT PERFORMANCE AND LEARNING OUTCOME

2.6.1 Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed onwebsite and attainment of POs and COs are evaluated

Index for supporting documents

S. No.	Particulars	Page No.
1.	Program Outcomes (POs) and Program Specific	1-9
	Outcomes (PSOs)	
2.	Course Outcomes (Cos)	10-54
3.	CO-PO Attainment	55-66
4.	Consolidated CO-PO attainment	67

Bangalore-60 & soouth

Dr. Anuradha. M
Principal
Padmashree Institute of
Management & Sciences

PROGRAM OUTCOME AND PROGRAM SPECIFIC OUTCOME

PG DEPARTMENT OF FOOD SCIENCE

MSC FOOD AND NUTRITION

Program outcome:

PO 1	To provide quality education to make the students technically competent to face the
	challenges in the field of Food Science, Nutrition and Dietetics.
PO2	To impart knowledge and skills necessary to work in research laboratories, food
	industries, health sector and at the community level.
PO3	To synergize a new generation with professional competence to face the challenges
	of the food processing sector

Program specific outcome:

PSO 1	To provide advanced knowledge and skills in highly job oriented courses in the
	areas of Food Processing, Quality Control, Food Safety, and Nutritional
	Sciences.
PSO 2	To conduct need based multidisciplinary research for improving the livelihood
	of the community and the nation.
PSO 3	To identify food based strategies for alleviating nutritional problems to achieve
	nutrition and health security.
PSO 4	To develop entrepreneurial skills by providing skill development programmes
	in commercial food processing.

PROGRAM OUTCOME AND PROGRAM SPECIFIC OUTCOME

PG DEPARTMENT OF FOOD SCIENCE

MSC IN CLINICAL NUTRITION AND DIETETICS

Program outcome:

PO 1	Clinical Nutrition & Dietetics is a specialized area of nutrition that requires specific training. Clinical
	nutrition is concerned with therapeutic uses of nutrition, usually as part of a complete health care
	program.
PO2	Clinical Nutritionists create effective nutrition plans aimed at disease prevention and treatment,
	strengthening of the immune system, and nourishment of the body.
PO3	This subject teaches the students about food, components of food, diet and their role in physiological
	and biochemical changes in the body.
PO4	This course helps students to learn on basics of food and nutrients, metabolic pathways, physiology of
	different organs and their functioning, diet planning for different age groups, Different methods of
	cooking, Specific nutrition needs, food safety to know about sanitation and hygiene, diet for different
	disease conditions, food borne illnesses by microbes.
PO5	This course makes students equipped to learn the strategies to overcome problem of malnutrition and
	deficiencies through proper knowledge,
PO6	They also will learn about the role of physical activity and exercise in health, nutraceuticals and their
	benefits

Program specific outcome:

PSO 1	This course helps students to learn on basics of food and nutrients, metabolic pathways, physiology
	of different organs and their functioning.
PSO 2	After completing this course students will be able to plan diet for different age groups
PSO 3	They will understand about different methods of cooking
PSO 4	This course emphasizes on specific nutritional needs of a person
PSO 5	The students will understand importance of food safety and know about sanitation and hygiene, diet
	for different disease conditions, food borne illnesses by microbes
PSO 6	At the end of this course students understand Specific nutrition needs, how to overcome problem of
	malnutrition and deficiencies
PSO 7	They understand Role of physical activity and exercise in health, nutraceuticals and their benefits.

MACHINERIES, PACKAGING, LABELLING AND REGULATIONS

CO 1	The course will help to understand the Emerging Packaging Technology, Edible
	Packaging Systems, Smart packaging, active and intelligent packaging technologies.
CO 2	It deals with: Food process equipment design, it gives insight about principles types
	performance and evaluation of food packaging system.
CO 3	This course emphasizes on Laws, Regulations and Guidance, Functions of Labelling.
	Students will gain knowledge on international food legislation & standards and Food
	safety

Formulations and Ready-to-Eat Technologies:

CO 1	This course emphasizes on Introduction, need for convenience food and types,
	Advantages - Ready to eat/ ready to cook/ready to serve foods and its manufacturing
	process.
CO 2	It deals with Technology for the manufacture of bakery products, Extruded snack foods:
	Formulation and processing technology, Formulation of functional foods containing
	nutraceutical – stability and analytical issues.
CO 3	Students will understand the Formulation of special dietary foods; Formulation of nutrient
	rich foods; Therapeutic, Parenteral and Geriatric nutrition and relevant food formulations;
	formulation of therapeutic and probiotics foods, determination of Glycaemic index of
	selected foods.
CO 4	Formulation of Spread and Bakery Shorteners High Protein Foods Packaging of Ready to
	Eat Foods.

PROGRAM OUTCOME AND PROGRAM SPECIFIC OUTCOME

PG DEPARTMENT OF FOOD SCIENCE

MVOC FOOD TECHNOLOGY AND QUALITY MANAGEMENT

Program outcome:

PO 1	It is a skill enhancement program for students interested in food technology and quality management
	sector and enhance employability in quality control department of food industry
PO2	This course helps students to become industry ready and gives life science students excellent
	opportunity to acquire skills and apply them in the 6 months industry internship which is a part of the
	curriculum.
PO3	This program will impart ability to apply principles to maintain quality of food in food industry.
PO4	This program will impart training in industry -oriented skills required in food technology and quality
	management in food industry

Program specific outcome:

PSO 1	It is a general course emphasizing Technology and quality control involved in food industry
PSO 2	After completing this course student will have a knowledge in food quality and management, Food
	chemistry, Food Safety Management Systems Food Fortification and Food Additives and Food
	product development and sensory evaluation.
PSO 3	It also emphasis on food and allied industries, safety, regulations, control and entrepreneurship in
	food sector.
PSO 4	It also deals with machineries, packaging, labelling and regulations and formulations in food
	industry.
PSO 5	It also deals with the basics of biochemical and microbiological techniques, fermentation and
	enzyme technology
PSO 6	It gives the learner the insight on biostatistics, research methodology which is a requisite if students
	want to go for research.
PSO 7	The course emphasizes on improving the practical sk Techniques in Food Processing , Analytical
	techniques in food industry, methodologies in enzyme technology and fermentation, quality control
	and quality assurance, industrial practices in food industries, practices in biochemical and
	microbiological techniques.
PSO 8	Practical application and theory for one and half year along with project work for product
	development at college and six months on job training in the industry will make the student industry
	ready.

PROGRAMME OUTCOMES

MSc. BIOTECHNOLOGY

Upon completion of the MSc. Biotechnology Programme, the candidate should be able to

PO1	Understand the basic knowledge and concepts of biotechnology and other interdisciplinary subjects
PO2	Ability to apply their knowledge in experiments which they can conduct independently
PO3	practical exposure to the basic and the advanced fields of biotechnology
PO4	Gain practical knowledge about advanced subject area like nanobiotechnology, multi omics, immunotechnology, and animal, plant and agriculture biotechnology
PO5	Advancement of their professional career and employment in diverse areas of biotechnology
PO6	Student can solve, analyze and interpret data generated from experiments done in project work or practical courses
PO7	Learn modern analytical tools/ software/ equipments and analyze and solve problems in various courses of biotechnology

Programme Specific Outcome

PSO1	Students will be able to Understand and apply their knowledge of Animal Biotechnology, Plant
	Biotechnology, cell biology, biochemistry, microbiology to solve the problems related to the field
	of biotechnology
PSO2	Apply their knowledge in performing experiments
PSO4	Gain practical knowledge about advanced subject area like nanobiotechnology, multi omics,
	immunotechnology, and animal, plant and agriculture biotechnology
PSO5	Advancement of their professional skill and employment opportunity in diverse areas of
	biotechnology
PSO6	Student can solve, analyze and interpret data generated from the laboratory
PSO7	Learn various analytical tools/ software/ equipments and solve problems in various courses of
	biotechnology

MSc. Microbiology Programme Outcomes

PO1	Acquire knowledge on fundamentals and advanced aspects of microbiology
PO2	Understand details of bacterial, fungal, algal and viral morphology and physiology
PO3	Student will able to cultivate and characterize bacterial and fungal strains, immune function and recombinant DNA technology
PO4	Able to understand the concepts and development of microbial diseases in animals & plants
PO5	Will have gained in-depth knowledge about basic and advanced microbiology which lead to various career opportunity

Programme Specific Outcome

PSO1	Students will gain knowledge in principles and applications of microbiology to be applied in various
	field
PSO2	Enrich research knowledge and understanding of the microbiology and can apply in various research
	and innovation.
PSO4	Students will be able to understand methodologies based on modern techniques to be used in
	research institutions and other industries.
PSO5	Eligible for pursuing higher education (M.Phil, Ph.D) in the different fields. Eligble to qualify
	various examinations such as CSIR-NET, ARS-NET GATE,ICMR, DBT-BET and many other
	examination.
PSO6	Students can start entrepreneurship ventures such as consultancy, diagnostic centre and other
	industries
PSO7	Fetch career opportunities for students with microbiology background in various countries.

MSc. BIOCHEMISTRY Programme Outcomes

PO1	Skill Development: Master academic, technical, managerial and crucial soft skills to qualify for
	careers in research, industry, education, administration and management or for higher studies where a
	holistic understanding of applied biosciences is required
PO2	Communication: Acquire effective communication and creative expression skills in the form of
	writing, design, presentation and networking to convincingly articulate scientific ideas in biosciences
	and related fields
PO3	Research: Develop a scientific mindset with the capacity for analytical and innovative thinking and
	practical knowhow to formulate, design and ethically implement scientific research in frontier areas
	of Biochemistry, Biotechnology and Microbiology
PO4	Employment and Entrepreneurship: Acquire the necessary knowledge and proficiencies to become
	employable or get self-employed and thereby create job opportunities through entrepreneurship in
	heath, agriculture, industry, environment and allied areas of applied biosciences and thereby
	affirmatively contribute to scientific social responsibility.

Programme Specific Outcome

PSO1	Demonstrate an understanding of structure and metabolism of macromolecules and understand the
	regulation and disorders of metabolic pathways
PSO2	Gain proficiency in laboratory techniques in both biochemistry and molecular biology, and be able to
	apply the scientific method; these technologies help to address the biological and medical challenges
	faced by humankind
PSO3	Acquire thorough knowledge in biochemical techniques, immunology, physiology and
	Biotechnology
PSO4	Learn to work as a team as well as independently to retrieve information, carry out Research
	investigations and result interpretations
PSO5	Develop the ability to understand and practice the ethics surrounding scientific Research
PSO6	Realize the impact of science in society and plan to pursue research

COURSE OUTCOME

MSc. MICROBIOLOGY

MBH 101: Bacteriology and Virology

CO1	The basic concepts of classification, nomenclature and recent advances in the microbial taxonomy
	can be learned.
CO2	Structure, cellular components and reproduction of bacteria can be studied.
CO3	Nutritional requirement and different cultivation techniques can be learned.
CO4	Nomenclature and classification of the virus can be studied
CO5	Knowledge about the different viral cultivation techniques will be gained.

MBH 102: Eukaryotic microbiology

CO1	Importance of protozoa, their structure and cultivation can be learnt.
CO2	Isolation, cultivation and classification of algae and their reproduction will be studied.
CO3	Knowledge with respect to the applications part of algae in food, fuel and therapeutics will be
	gained.
CO4	Structure, growth and reproduction of different fungi will be studied.
CO5	Classification of fungi and their importance in various field will be learnt.

MBH 103: Microbial Physiology and Biochemistry

CO1	Complete information regarding the microbial metabolites, stress response in microbes and
	bioluminescence in microbes will be gained.
CO2	Definition of enzyme their mechanism of action and kinetics will be studied.
CO3	Metabolism of carbohydrate, fermentation pathways, bioenergetics and energy production will be
	taught.
CO4	Students will be gaining knowledge in the field of lipid classification, structure and their
	biosynthesis pathways.
CO5	Structure of nucleic acid, and the synthesis of purines and pyrimidine's will be taught to the
	students.

MBH 104: Microbial and Biochemical techniques

CO1	Different isolation techniques, and preservation of microorganism will be learnt by the students.
CO2	Different microbial growth measuring techniques will be taught to students.
CO3	Students will be learning about the concepts like metagenomics.
CO4	Different Spectrophotometry, spectroscopy, chromatography, electrophoresis techniques will be
	taught to students.
CO5	Different isotopes, their labelling and safety guidelines will be taught to the students.

PROGRAM OUTCOME AND PROGRAM SPECIFIC OUTCOME MASTER OF COMMERCE

Program Outcome:

PO 1	Demonstrate professional skills for global employability and lifelong learning.
PO 2	Apply the knowledge of accounts, taxes, management fundamentals and corporate practices
	to find the solution for problems in business and commerce.
PO 3	Application of strategies in their job/work by the contextual knowledge to various
	accounting and finance concepts.
PO 4	Conduct business ethically follow professional ethics, responsibilities and norms

Program specific outcome:

PSO 1	Apply relevant knowledge and financial tools in manufacturing and service operations of
	the nation and region.
PSO 2	Demonstrate technical and decision making skills in the areas of national taxation, global
	accounting, finance and banking.
PSO 3	Formulate organizational decisions through applied research in commerce.
PSO 4	Identify, formulate, review research literature, and analyse complex business problems
	reaching substantiated conclusions using principles and practices of accountancy and
	general management techniques.

M.SC FOOD AND NUTRITION

Course Outcome

HSFN 101 - HUMAN PHYSIOLOGY

CO1	Enable the students to understand the integrated function of all body systems
CO2	Advance their understanding of some of the relevant issues and topics of human physiology
CO3	Enables students study the recent advances in human physiology
CO4	Acquire basic knowledge on Human Physiology

HSFN 102 - NUTRITIONAL BIOCHEMISTRY

CO1	Enables student to acquire knowledge on biochemistry at the undergraduate level.
CO2	Make students to become proficient for specialization in nutrition and dietetics.
CO3	Attains understanding on integration of cellular level metabolic events to nutritional disorders and
	imbalances.
CO4	Students acquire knowledge on nutritional biochemistry

HSFN 103 - HUMAN NUTRITION

CO1	Provides in-depth knowledge of the physiological and metabolic role of macro and micro nutrients
	and their importance in human nutrition.
CO2	Students get familiarise with the recent advances in nutrition and apply this knowledge in planning
	for public health programme.
CO3	Enables the students to translate the knowledge into practical guidelines for dietary needs of human
	nutrition at different stages of life.

HSFN 104 - RESEARCH METHODOLOGY

CO1	Student develops a scientific approach and understand the process of research
CO2	Enables students to develop the competence for selecting methods and tools appropriate for research
	topics
CO3	Prepares the students to design and carry out research studies in the field of food and nutrition

HSFN 105 - FOOD PRESERVATION

CO1	Students gain knowledge about principles and methods of food preservation
CO2	Students will have an in-depth knowledge about types of food preservation
CO3	Attains understanding on the preservation by high temperature like dehydration, canning
CO4	Learns about the preservation by low temperature by chilling and freezing
CO5	students enhance their knowledge about irradiation, fermentation, preservation by preservatives
CO6	Learns about different packaging used in food industry and its advantages and disadvantages

HSFN 201 - STATISTICS

CO1	Enables students apply statistical techniques to research data for analyzing and for interpretation
	of data.
CO2	Enables students to summarize data and present it using tables and graphs.
CO3	Attains knowledge to understand the components of research proposals.

HSFN 202 - FOOD SCIENCE

CO1	Students understand the role of nutrition in different stages of life span
CO2	Provides the guidelines for Adequate Nutrition throughout life span
CO3	Students get acquainted with growth, development and physiological changes during pregnancy
	lactation and infancy
CO4	Enables to understand the interrelationship between nutrition and growth and development during
	these phases

HSFN 203 - NUTRITION THROUGH LIFE SPAN

CO1	Provides an understanding of composition of various food stuffs
CO2	Familiarise students with changes occurring in various foodstuffs as a result of processing and
	cooking
CO3	Enable students to use their theoretical knowledge in various applications and food preparations
CO4	Familiarise the students with the recent trends in food science

HSFN 204 - FOOD SANITATION AND HYGIENE

CO1	Enable the students to inculcate the sanitary aspects of safe of handling food
CO2	Helps the students gain knowledge of personal and environmental hygiene
CO3	Learn more about hygiene and sanitation

HSFN 205 – SOFT CORE-FOOD MICROBIOLOGY

CO1	Familiarizes the students with recent advances in food microbiology
CO2	Learn concepts of fermented foods, dairy, food preservation, detection of food-borne diseases, their
	control measures.
CO3	Gains consciousness on types of food spoilage, sterilization techniques
CO4	Acquires awareness on dairy products, cereal products, and fish meat products and their sources of
	contaminations

HSFN 301 - CLINICAL NUTRITION AND DIETETICS - I

CO1	Student understands the biochemical and Physiological impartments in diseases.
CO2	Student understands the role of Nutrition for good
CO3	Obtains knowledge of dietary factors and dietary management of various diseases
CO4	Develops capacity and attitude for taking up dietetics as a profession

HSFN 302 - PUBLIC HEALTH NUTRITION

CO1	Students gain insight into the national nutritional Problems and their implications in diseases
CO2	Familiarise the students regarding the preventive measures and management of nutritional problems
CO3	Develops the skills in organising and evaluating nutrition projects in the community

HSFN 303 - FOOD SERVICE MANAGEMENT

CO1	Student develops knowledge in areas of institutional food administration
CO2	Provides practical field level experience in institutional food administration
CO3	Impacts necessary expertise to function as a food service manager
CO4	Equips students to start their own food service unit leading to entrepreneurship

HSFN 304 - PHYSICAL FITNESS

CO1	Students understand the components of health and fitness and the role of Nutrition
CO2	Attains dietary and physical activity recommendations to achieve fitness and well being
CO3	Develops ability to evacuate fitness and wellbeing
CO4	Enables student to know the significance of sports nutrition components

HSFN 305 – CYBER SPACE

CO1	To educate about the regulation of cyber space at national and international level.
CO2	To enhance the understanding of problems arising out of online transactions and provoke them to
	find solutions
CO3	To understand the history of internet and understand the timeline under which it has evolved

HSFN 401 - CLINICAL NUTRITION AND DIETETICS - II

CO1	Student understands the biochemical and Physiological impartments in diseases.
CO2	Obtain knowledge of dietary factors and dietary management of various diseases/ disorders
CO3	Learns more about clinical nutrition

HSFN 402 - NUTRITION IN CRITICAL CARE

CO1	This course enables the student to understand the physiology, metabolism and special nutritional
	requirements of the critically ill.
CO2	Familiarizes with the special nutritional support techniques and feeding formulations of critically ill to
	meet their nutritional needs
CO3	Enables students to gain knowledge on nutrition in critical care

HSFN 403 - NUTRITION IN EMERGENCIES AND DISASTERS

CO1	Familiarizes students with various natural and emergencies and disasters having an impact on
	nutrition and health status
CO2	Enables student to understand the Special nutritional arising out of these situations
CO3	Understands the strategies for nutritional rehabilitation management of the health of emergency affected
	populations
CO4	Enables students to gain knowledge on nutrition in emergencies and disasters

HSFN 404 - FOOD ADULTERATION AND FOOD ADDITIVES

CO1	Enables the students to identify the commonly used adulterants in food
CO2	Helps students to know the different food additives used and the role of additives in food science.
CO3	Gains knowledge on food adulteration and food additives

M. Sc CLINICAL NUTRITION & DIETETICS

<u>SEMESTER – I COURSE OUTCOME:</u>

CND 101: Human Physiology

CO1	To understand the structure of various organ systems in the human body
CO2	To understand the integrated functions of various organ systems in the
	human body
CO3	To understand the role of various organs in the maintenance of health
CO4	To describe the organization of tissues and organs
CO5	To understand the basic and advanced physiological processes, and analyse
	their biological meaning, regulation and integration

CND 102: Fundamentals of food and nutrition

CO1	To understand the concept of meal preparation
CO2	To understand the role of hospital food service system
CO3	To provide students with the knowledge of basic terminology and several
	aspects of nutrition and the functions of food in healthy life sustenance
CO4	To understand the basics of nutrient requirement
CO5	To understand the various functions of food and its role in day-to-day life

CND 103: Human Nutrition

CO1	To understand the factors affecting nutrient absorption
CO2	To highlight the physiological and metabolic role of nutrients and their
	relationship to human health and well-being
CO3	To understand the health problems associated with nutrient deficiency or
	toxicity
CO4	To determine the various methods of energy expenditure and the factors
	affecting it
CO5	To understand the role of nutrients – both macro and micro – in maintain
	health of an individual

CND 104: Metabolism

CO1	To get an insight into interrelationships between various metabolic
	pathways.
CO2	To understand the mechanisms adopted by the human body for regulation
	of metabolic pathways.
CO3	To understand the role of catabolic and anabolic pathways in cellular
	metabolism
CO4	To understand the role of free radicals and antioxidants in health and disease
CO5	To understand the metabolic disorders of various hormones and enzymes

CND 105: Research methodology & scientific writing

CO1	To identify, compare and prepare the key elements of a research proposal
CO2	To develop skills in qualitative and quantitative data analysis
CO3	To learn the various aspects of research process
CO4	To develop advanced critical thinking skills in students
CO5	To inculcate scientific and inductive thinking in students

SEMESTER – II COURSE OUTCOME:

CND 201: Life cycle and Nutrition

CO1	To relate food and nutrients to the biological requirements of humans at
	different stages of life cycle
CO2	To understand the nutrition-related concerns specific to each stage of the
	human life cycle to consequences for health and disease
CO3	To reflect upon the consequences of physical, biochemical, physiological,
	social and psychological factors impacting nutritional intake and status
	during each stage of the human life cycle
CO4	To design food plans to meet the needs of humans at various life cycle
	stages
CO5	To understand the developmental stages of infant during pregnancy and
	lactation

CND 202: Clinical nutrition and Diet therapy-I

CO1	To understand the basic principles of diet and diet therapy
CO2	To acquire knowledge of modifications of normal diet for therapeutic
	purposes
CO3	To acquire the skills and techniques involved in the planning and
	preparation of therapeutic diets for various ailments
CO4	To develop the capacity and attitude for taking dietetics as a profession
CO5	To apply the different diets for patients appropriately

CND 203: Food microbiology and food safety

CO1	To understand the microorganisms in foods and its relation to health
CO2	To study about contaminated food and infectious diseases
CO3	To understand the importance and significance of microorganisms in food
CO4	To understand the factors influencing food spoilage
CO5	To study the various food borne diseases

CND 204: Public health Nutrition

CO1	To gain knowledge on the current nutritional scenario
CO2	To understand the policies towards nutritional security
CO3	To gain knowledge of the various existing public health programmes and to
	understand its functioning and role towards public
CO4	To learn about the policies and improve nutritional status of public.
CO5	To understand the role of nutritionist in educating the public about nutrition.

CND 205: Biostatistics

CO1	To learn basic statistical procedures for research
CO2	To understand applications of statistical techniques for analysis and
	interpretation
CO3	To use selective software for qualitative and quantitative data analysis
CO4	To understand the basic principles and applications of probability
CO5	To learn about various statistical tests

<u>SEMESTER – III COURSE OUTCOME:</u>

CND 301: Nutrition in physical fitness

CO1	To understand the role of nutrition in management of health
CO2	Understand the role of physical activity in management of health
CO3	To understand the composition of human body and its changes through life
	cycle
CO4	To understand the physiological changes during physical activity in various
	organ systems of the body
CO5	To gain knowledge on the anti-doping regulations and the various
	organizations involved in its making

CND 302: Nutrigenomics and Nutraceuticals

CO1	To familiarize students with the basic concepts in nutritional genomics and
	to develop an understanding of genomics and gene regulation with respect
	to diet and to obtain an appreciation for the role and importance of nutrition
	in prevention of polygenic diseases.
CO2	Students will gain knowledge to apply nutrigenomics and to design
	nutritional strategies for prevention of chronic diseases such as
	cardiovascular disease, obesity, type-2 diabetes and cancer.
CO3	To gain knowledge of the various phytochemicals and their potential health
	benefits
CO4	To understand the role of nutraceuticals and functional foods in pediatrics,
	geriatrics, sports, pregnancy and lactation
CO5	To understand the concepts of nutraceuticals through traditional food and
	medicine.

CND 303: Nutrition and diet counseling

CO1	To understand the principles methods of diet counselling
CO2	To apply the counselling methods to patients with different diseases
CO3	To acquire skills in diet counselling and feeding of patients
CO4	To gain knowledge in handling hospitalized patients
CO5	To analyse the food habits and bring about the dietary changes in patients

<u>SEMESTER – IV COURSE OUTCOME:</u>

CND 401: Nutrition in critical care and emergencies

CO1	To gain knowledge in handling hospitalized patients
CO2	To know the nutritional assessment of ill patients
CO3	The students will be able know nutrition support systems during emergency
CO4	To understand the physiology, metabolism and special nutritional
	requirements of the critically ill
CO5	To be familiar with the special nutritional support techniques and feeding
	formulations to meet their nutritional needs

CND 402: Clinical Nutrition & Diet therapy-II

CO1	To understand the etiology, physiology and metabolic anomalies of acute
	and chronic diseases and patient needs
CO2	To learn the effect of the various diseases on nutritional status and nutrient
	and dietary requirements
CO3	The students will be able to intervene the metabolic anomalies of acute and
	chronic diseases.
CO4	The students will be able to plan menu for various diseases based on their
	nutritional status and dietary needs.
CO5	To understand the risk factors for degenerative diseases and towards the
	management of several disease conditions

CND 403: Drug and nutrient interaction & Toxicology

CO1	To understand critical mechanism of drug nutrient interaction and toxicity
	in humans
CO2	To develop critical appraisal related to clinical toxicology
CO3	To grasp the role of addictive drugs in toxicology
CO4	To describe typical poisoning of selected drugs
CO5	To understand the impact of maternal-fetal toxicology

PROGRAM OUTCOME AND PROGRAM SPECIFIC OUTCOME

PG DEPARTMENT OF FOOD SCIENCE

MVOC FOOD PROCESSING AND NUTRACEUTICALS

Program outcome:

PO 1	This program will impart ability to apply principles of food processing and Nutraceutical in the
	respective industry.
PO2	This program will impart training in industry -oriented skills required for Food and Nutraceutical
	Industry
PO3	This course helps students to become industry ready and gives life science students excellent
	opportunity to acquire skills and apply them in the 6 months industry internship which is a part of the
	curriculum there by enhances employability in food and nutraceutical sector
PO4	This program nurtures the local talent and create an ecosystem of entrepreneurship in food and
	nutraceutical sector

Program specific outcome:

PSO 1	It is a general course emphasizing on technology and techniques involved in food processing &
	nutraceuticals, chemistry of food and nutraceuticals, food safety and standards.
PSO 2	It also emphasis on food and allied industries, nutraceutical industry, safety, regulations, control and
	entrepreneurship in food and nutraceutical sector.
PSO 3	It also deals with machineries, packaging, labelling and regulations and formulations and ready to eat
	technologies in food and nutraceuticals industry.
PSO 4	It also deals with the basics of biochemical and microbiological techniques, fermentation, enzyme
	technology, nutrition and metabolism of macromolecules.
PSO 5	It gives the learner the insight on biostatistics which is a requisite if students want to go for research.
PSO 6	It emphasizes on soft skills required for a learner to improve their communication and soft skills.
PSO 7	The course emphasizes on improving the practical skills on methodologies in food processing,
	techniques in food and nutraceuticals industry, methodologies in enzyme technology and
	fermentation, quality control and quality assurance, industrial practices in food and nutraceuticals and
	practices in biochemical and microbiological techniques.
PSO 8	Practical application and theory for one and half year along with project work for product development
	at college and six months on job training in the industry will make the student industry ready.
	at conege and six months on job training in the medsary will make the stadent industry ready.

COURSE OUTCOME

MVOC FOOD PROCESSING AND NUTRACEUTICALS

I SEMESTER

FOOD PROCESSING AND NUTRACEUTICALS TECHNOLOGY

CO 1	Students will be introduced to scope of food processing and nutraceutical industry -
	Indian scenario; opportunities and domains of food processing sectors; skills required in
	the different sectors: dairy, vegetable, fruits, beverages, spices processing sectors;
	government policies: FICSI.
CO 2	Comparative analysis of food processing sector in India and Europe.
CO 3	The students will understand the quantitative and qualitative analysis of food additives,
	effect of processing on the food, sensory evaluation and the different scales associated
	with it.
CO 4	Students will be gaining knowledge in principles of food processing, food preservation
	and nutraceutical processing. It also deals with food and nutraceutical resources.

CHEMISTRY OF FOOD AND NUTRACEUTICALS

CO 1	The objective of this course is to teach the students about the chemistry of food and it's
	related to its composition such as water and other macro and micro molecules.
CO 2	It also teaches about chemistry of food additives.
CO 3	They will be understanding the techniques of biochemistry like estimation of
	carbohydrates, proteins, lipids, food additives.
CO 4	They will understand biochemical changes during processing and preservation, and
	chemistry of nutraceutical, they will also be able to do nutritive analysis by proximate
	analysis.

BASIC TECHNIQUES OF FOOD PROCESSING AND NUTRACEUTICALS

CO 1	The objective of this course is to teach the students about the extraction techniques
	involved
CO 2	In extraction of active ingredients, chromatographic techniques used for purification,
	spectroscopic and electrophoretic methods involved in identification of active
	ingredients in food and nutraceutical industry.
Co 3	It emphasizes on the different types and importance of food measurements in food
	industry.

FOOD SAFETY AND STANDARDS

CO 1	This course deals with concept and meaning of food quality, food safety and food quality
	management.
CO 2	Food safety laws and standards hazard analysis, safety evaluations and quality control in
	food and nutraceutical industry.
CO 3	The students will know the how to be safe and secure at work place, keeping the work
	station clean, reporting and documentation in quality and will develop the interpersonal
	skills.
CO 4	Students will be aware of food safety acts in India and in the world.

BIOSTATISTICS

CO 1	This course define the principal concepts about biostatistics. Recognize the definition of
	statistics, its subject and its relation with the other sciences.
CO 2	Restate the principal concepts about biostatistics. Collect data relating to
	variable/variables which will be examined and calculate descriptive statistics from these
	data.
CO 3	Identify data relating to variable/variables. Identify convenient sample by using sampling
	theory.
CO 4	Identify distribution form relating to the variable/variables. Recognize normal
	distribution. Interpret data via normal distribution.
CO 5	Define the principal concepts of probability. Recognize the binomial distribution.
	Interpret data via binomial distribution. Apply hypothesis testing via some of the
	statistical distributions.
CO 6	Define some concepts about hypothesis testing. Apply hypothesis testing to the data
	through these concepts. Arrange the results of the hypothesis testing and make a statistical
	decision.

II SEMESTER

FERMENTATION AND ENZYME TECHNOLOGY

CO 1	Aim of the course is the knowledge of the fermentative processes used in the industrial
	production of primary and secondary metabolites, biomasses and recombinant proteins.
CO 2	Bacteria, yeasts, moulds and mammalian cells are used in batch fermentation, fed batch
	fermentation, continuous culture, and continuous culture with cell/substrate recycle.
CO 3	Kinetics of microbial growth and product formation in industrial fermentation processes
	will be described.
CO 4	Distinguish the fundamentals of enzyme properties, nomenclatures, characteristics and
	mechanisms.
CO 5	It helps to understand and apply biochemical calculation for enzyme kinetics, compare
	methods for production, purification, characterization and immobilization of enzymes,
	discuss various application of enzymes that can benefit human life, discover the current
	and future trends of applying enzyme technology for the commercialization purpose of
	biotechnological products. Plot graphs based on kinetics data.

NUTRITION AND METABOLISM

CO 1	The students will be able to describe the structure of Macromolecules and identify the
	major class of macromolecules to which it belongs.
CO 2	List the stages in the catabolism of food molecules and describe what occurs during each
	stage.
CO 3	Describe the biochemistry process, basic concept of human nutrition and the relationship
	of the consumption of foods to nutritional status and health.
CO 4	Evaluate the biological functions of foods for health in addition to nutritional values.
CO 5	Evaluate the potential for adverse events related to dietary supplements. Apply their
	knowledge in food biochemistry and nutrition in designing new range of products with
	improved nutritional characteristic

III SEMESTER

FOOD AND ALLIED INDUSTRIES

CO 1	This course will help students to understand General principles and technology of food
	processing,
CO 2	It also deals with Agro-based products and it's processing along with Poultry, meat and
	fish processing industry.
CO 3	It imparts the knowledge in processing of Milk and dairy products.
CO 4	The knowledge of Processing in Beverage industry, Spices and spice oleoresins -
	Bakery, sugar and confectioneries products industry will be imparted.

NUTRACEUTICALS INDUSTRY

CO 1	On successful completion of this course students will be understanding the concepts
	related to Organizational elements, classification of nutraceutical, dietary supplements,
	fortified foods, functional foods and phytonutracuticals.
CO 2	Scope involved in the industry, Indian and global scenario
CO 3	They will also know the practical skill of extraction phytochemicals along with
	quantitative and qualitative analysis

BIOCHEMICAL AND MICROBIOLOGICAL TECHNIQUES

CO 1	The student will understand the basic concepts and measurements of solution Separation
	and identification of active ingredients in food and Nutraceutical Industry by
	chromatography and electrophoretic techniques.
CO 2	They will be well versed with analytical and advanced analytical techniques.
CO 3	On successful completion of the course they will understand microbiological and
	staining techniques.

SAFETY REGULATIONS, CONTROL AND ENTREPRENEURSHIP

CO 1	From this course they will get the knowledge of Essentials of quality control, Quality
	Assurance.
CO 2	The students will know the how to be safe and secure at work place, keeping the work
	station clean, Reporting and documentation in quality and will develop the Interpersonal
	Skills.
CO 3	Students will be aware of food safety acts in India and in the world.

know about ethics and environmental concerns with respect to food and nutraceutical
industry in processing as well as research.
They will understand biosafety levels, biosafety cabinets, biosafety guidelines. Students
will also understand the environmental release of GMOs, carto gene protocol, the student
will acquire knowledge required for starting a business.
in Γ

SOFT SKILLS

CO 1	The student will Develop effective communication skills (spoken and written).
CO 2	Develop effective presentation skills.
CO 3	Conduct effective business correspondence and prepare business reports which produce
	results.

COURSE OUTCOME MVOC FOOD TECHNOLOGY AND QUALITY MANAGEMENT

M. VOC FOOD TECHNOLOGY AND QUALITY MANAGEMENT COURSE OUTCOME

I SEMESTER

FOOD PROCESSING TECHNIQUES- I

CO 1	Students learn the basic types of food processing.
CO 2	Effect of processing on physical properties, sensory and nutritive value of
	foods and chemical changes in food.
CO 3	They will understand the functional properties of food.
CO 4	Students will learn basic and advanced techniques of food preservation.

FOOD BIOCHEMISTRY

CO 1	To acquaint various functional chemical constituents in food.
CO 2	To build a relationship between the dynamic forces of food and the dynamic
	forces of digestion and growth.
CO 3	To enable the students to Acquire knowledge on the macro and micro
	constituents of the food.
CO 4	Know the structure and chemical characteristics of constituents of food.

PRINCIPLES OF ANALYTIC CHEMISTRY

CO 1	Students gain knowledge about different methods of investigation used in the
	analysis of foods.
CO 2	And biochemical assay and about different instruments used in food analysis.
CO 3	They will understand the principles and applications of different techniques
	used in food and nutrition research.

BASICS OF FOOD MICROBIOLOGY

CO 1	Enable the students to gain an insight into basic aspects of food
	microbiology.
CO 2	Students will acquire knowledge and understanding of different food micro
	organisms
CO 3	Different techniques used in its detection.
CO 4	Students will understand causes of food spoilage by different foods and its
	type

RESEARCH METHODOLOGY

CO 1	Students can understand the scientific approaches to research and to understand the
	significance of research methods in food.
CO 2	They will learn and identify the sources of variability and uncertainty in research.
CO 3	Students can understand the importance of scientific writing and develop competence
	in writing skills.
CO 4	They will gain knowledge about drafting research proposal and publish scientific
	paper.

SEMESTER II FOOD PROCESSING TECHNIQUES –II

CO 1	Students learn the structure, composition and technology of cereals, pulses, oilseeds,
	fruits and vegetable and milk, sugar and animal foods processing.
CO 2	They also learn about various pre-processing and processing techniques needed for
	food industry.

FERMENTATION AND ENZYME TECHNOLOGY

CO 1	After completion of the course, student acquire a detailed knowledge of number of
	products which are produced by industrial fermentation processes.
CO 2	They will be able to explain the production of industrial products from
	microorganisms using fermentation.
CO 3	They gain in depth knowledge about the enzymes in food industry and to comprehend
	the scale up and large-scale production.

FOOD SAFETY MANAGEMENT SYSTEMS

CO 1	After completion of this course the student learn the Various elements and
	techniques of food safety.
CO 2	The student will be able to comprehend the techniques like GMP, GHP, ISO,
	HACCP and HARPC.
CO 3	The students will have thorough knowledge of basic elements of quality control
	and safety evaluation of foods and quality standards like AGMARK, CAC and
	FSSAI.

FOOD FORTIFICATION AND FOOD ADDITIVES

CO 1	This course helps to understand basis of fortificants, selection.
CO 2	Use of specific food vehicles, food laws for fortification, Technology of fortifying cereal
	products, beverages, candies, snack products.
CO 3	Role of additives in processed foods, Sweetening agents, colouring agents and flavouring
	agents used in processed food industry.

SEMESTER III

FOOD AND ALLIED INDUSTRIES

CO 1	At the end of the course the students will be able to know about the different
	principles and technology of food processing.
CO 2	Followed in different industries like milk, beverage, Bakery and meat industry.

FOOD QUALITY SYSTEM AND MANAGEMENT

CO 1	At the end of the course the students will be able to, explain the application of food
	quality and food safety system.
CO 2	Identify the hazard of the food chain to ensure food safety.
CO 3	Examine the chemical and microbiological quality of food samples, Review of food
	quality and standards.

PACKAGING, LABELING AND THEIR REGUALTIONS

CO 1	After completion of this course students can learn about the basics of food packaging, different packaging materials, and packaging material suitable for different processing methods.
CO 2	The students can gain knowledge in packaging laws and standards and applications of food packaging technology in food industry.

FOOD PRODUCT DEVELOPMENT AND SENSORY EVALUATION

CO 1	This course presents to understand basis of Food and new Product Development.
CO 2	Role of sensory evaluation in consumer product acceptance and types of sensory tests used in food product development.
CO 3	Consumer behaviour in purchasing processed food and Packaging of new products.
CO 4	Safety concerns related to new product development.

SEMESTER IV

INDUSTRY INTERNSHIP

MBH-201: MICROBIAL GENETICS

CO1	Students acquired sound knowledge about Prokaryotic and Eukaryotic genome, genome size,
	karyotype, types of chromosomes were.
CO2	Gene mutation, genetic recombination concepts were explained.
CO3	Gene transfer mechanisms, bacterial transformation, cytoplasmic inheritance were well understood
	by students.
CO4	Bacteriophages lysogenic and lytic cycles, R Plasmids were explained.

MBH-202: MOLECULAR BIOLOGY

CO1	Students attained knowledge about Molecular biology Concepts, DNA damage and repair, DNA
	replication.
CO2	Transcription, translation and gene expression regulators these concepts were well explained.
CO3	Control of Gene expression at transcription and translation level were learnt by students

MBH-203: ENVIRONMENTAL MICROBIOLOGY

CO1	Students acquired knowledge on Aerobiology, principles of sedimentation, transmission of airborne
	diseases and the diagnosis of allergies.
CO2	Fresh and marine ecosystems were studied in detail. Knowledge on management of waste water
	treatment was attained by students.
CO3	Concepts on Abiotic and biotic interactions of soil and microbes well explained. Biogeo chemical
	cycles were explained in detail.
CO4	Obtained knowledge on Microbial transformations of Carbon, Sulphur, and Mercury.
CO5	Mechanisms and adaptation of extremophiles were well understood by students.
CO6	Role of microbes in degradation, Bioremediation of soil, air and water and their advantages were
	learnt by students.

MBH-204: FOOD MICROBILOGY

CO1	Students acquired knowledge on scope of food microbiology, extrinsic and intrinsic factors and their
	source
CO2	Obtained knowledge on food spoilage, conventional and modern methods for detection of spoilage.
CO3	Attained knowledge on food – borne infections and intoxication.
CO4	Developed knowledge on principles and methods of food preservations.
CO5	Attained knowledge on fermented foods.
CO6	Food and sanitization methods were well explained to the students

MBH 301: MEDICAL MICROBIOLOGY

CO1	Comprehensive information and insights in medical microbiology, Normal microbial flora of human body and infection process routes of transmission of microbes in the body. Description and pathology of diseases.
CO2	Will have a specific focus on Description and pathology of diseases.
CO3	Will also provide conceptual knowledge and significance of Laboratory diagnosis of Common infective syndromes and parasitic manifestations, Methods of transmission and role of vectors-biology of vectors genetically modified microbes.
CO4	Obtain knowledge on Problems of drug resistance and drug sensitivity in bacteria.
CO5	Acquire the knowledge of Viral diseases, Interferon and types of inducers.

MBH 302: RECOMBINANT DNA TECHNOLOGY

CO1	Major events in the development of rDNA technology. Introduction of rDNA into bacterial cells.
	Selection of transformants and recombinants – lac selection.
CO2	Learning tools and techniques in rDNA technology- DNA manipulative enzymes.
CO3	Acquire skills on techniques of construction of recombinant DNA - Cloning vectors and isolation
	of gene of interest.
CO4	Construction of genomic DNA library and cDNA library. Methods for selection of recombinants
	and analysis of cloned genes by sequencing methods. Expression of recombinant protein in E. coli
	and eukaryotes.
CO5	Identify problems associated with production of recombinant proteins and protein purification and
	devising strategies to overcome problem.
CO6	Learning various application of rDNA technology in evolving plants for resistance to pest and
	disease, tolerance to herbicides and abiotic factors.
	Learning techniques for production of pharmaceuticals, growth hormones, vaccines, gene therapy
	in expression system.

MBH 303: IMMUNOLOGY

CO1	To promote critical, provide with a foundation in immunological processes, knowledge on how the immune system works building on their previous knowledge from biochemistry, genetics, cell
	biology and microbiology.
CO2	Be able to clearly state the role of the immune system, compare and contrast the innate versus adaptive immune systems. Be able to articulate the roles of innate recognition receptors (i.e. Toll-
	Like Receptors) in immune response, be able to compare and contrast humoral versus cell-
	mediated immune responses.
CO3	Be able to distinguish various cell types involved in immune responses and associated functions, be
	able to distinguish and characterize CD4+ T helper cell lineages Th1, Th2, Th17, and regulatory T
	cell (Treg)
CO4	Be able to distinguish and characterize antibody isotypes, development, and functions, understand
	the role of cytokines in immunity and immune cell activation and be able to identify and
	characterize cytokines of particular immune importance.
CO5	Understand the significance the Major Histocompatibility Complex in terms of immune response
	and transplantation, be able to describe lymphocyte development and the expression of their
	receptors; and be able to provide an overview of the interaction between the immune system and
	pathogens.

MBH 401: AGRICULTURAL MICROBIOLOGY

CO1	Students will learn about microbes and soil fertility, decomposition of organic matter by microorganisms, biological nitrogen fixation, genetic engineering, plant microbe interaction.
CO2	Rhizosphere microorganisms, siderophores , VAM, bioinoculants, biofertilizers, biopesticides,
	molecular plant pathology, molecular mechanism of disease establishment.
CO3	Plant diseases fungi, bacterial, mycoplasmal, viral, protozoa, viroids, parasitic plant diseases, post
	harvest diseases and control measures and integrated pest management in detail.
CO4	The paper dealt on the microbes and their interaction with soil and inorganic molecules. The
	microbes involved in soil fertility, fixation of inorganic molecules into organic absorbable form.
CO5	Bioinoculants involved as beneficial in nature. Molecular plant pathology and the plant diseases
	involved in the pathogenic cycle.

MBH 402: INDUSTRIAL MICROBIOLOGY

CO1	The paper concentrated on the microbes important in the industrial process. The fermentation
	reactions and the Fermentors involved in the production.
CO2	The scope of industrial microbiology, industrially important microorganisms and their preservation,
	strain improvement, maintenance and containment of recombinant organisms.
CO3	Different types of Fermentors – Solid state fermentation. Down streaming process for the separation
	of the product. Batch culture, continuous culture growth kinetics, physical and chemical parameters
	required for microbial growth, cell number, direct and indirect methods, Newtonian and Non-
	Newtonian fluid, plastic fluids, viscosities and anti—foam agents.
CO4	The study also dealt with Intellectual property rights and the Entrepreneurship. The patent,
	copyrights, trademarks, trade secret, geographical indications, Industrial designs.
CO5	Patent laws, Patenting of living organisms, procedure involved in patenting, patent infringement,
	patent filing and international patent law, PCT, provisional and complete specification, patentable
	and non-patentable materials, product planning and development, Trade related aspects (TRIPS),
	WTO, WIPO, international & regional, concept and theories of entrepreneurship, Entrepreneurial
	traits and motivation, Nature and importance of entrepreneurs.
CO6	Entrepreneurship in India, barriers in entrepreneurship, agreements, Valuation & business concerns.
	Government regulations for microbial products.

MBH 403: MICROBIAL BIOTECHNOLOGY

CO1	The paper dealt with the microbial biotechnology and its production of industrial important of
	products.
CO2	Microbial products of commercial use, microbial enzymes, immobilization of cells and enzymes and
	their uses.
CO3	Microbial transformation and organic synthesis of the medicinal products. The microbial products for commercial use ,industrial production of organic acids, amino acids, solvents, antibiotics, microbial
	polysaccharides and polyesters
CO4	The microbial products for commercial use ,industrial production ofhormones, anticholestrol compounds, vaccines, microbial insecticides, secondary metabolites, microbial enzymes, immobilized enzymes and cells
CO5	Nanotechnology, Bioethics and biosafety involved in the regulation of GM products.

MSC BIOTECHNOLOGY

BTH-101: CELL BIOLOGY

CO1	Emphasizes on Basic Characteristics of the Cell-Structure, organization and composition, Components
	of Blood and their functions, Extracellular matrix
CO2	To Understand the Cytoskeletal structures and their functionality
CO3	Helps acquire a comprehensive understanding of the Membrane transport in a cell
CO4	Focus on cell signaling, Cell-cell interaction, cell adhesion and cell junction
CO5	To study the Molecular events of cell division and cell cycle, regulation of cell cycle events- Cyclins,
	Cyclin dependent kinases, inhibitors. Apoptosis, necrosis.
CO6	Understanding the structure and functionality of specialized cells-Muscle and nerve cells
CO7	Knowing the Antioxidant defence system and Senescence

BTH-102: MOLECULAR GENETICS

CO1	To learn the physical basis of heredity
CO2	To Understand chromosomes and Genes (responsible for transmission of hereditary characters through
	generations), Karyotype analysis
CO3	Understanding of Genetic recombination and recombination in bacteria
CO4	Knowing the transposable genetic elements
CO5	Focus on Mutation, Sex determination and dosage compensation
CO6	To Study the Population genetics

BTH-103: GENERAL MICROBIOLOGY

CO1	To Study Microbial classification
CO2	Understanding of Prokaryotic Microorganism- General properties, Structure, and Reproduction
CO3	Focus on Eukaryotic Microorganisms- General characters, Structure and Reproduction
CO4	To understand Viruses, Virioids and Prions (Acellular entities)
CO5	Knowing the Microbial Growth and Control
CO6	Learning of Microbiological methods

BTH- 104: BIOCHEMISTRY

CO1	Provides knowledge about Principles of Bioenergetics
CO2	To understand Oxidative phosphorylation
CO3	Knowing of Carbohydrates Classification, structure, properties, function and metabolism
CO4	Focus on Amino acids and proteins
CO5	Deep understanding of Lipids Classification, structure, properties, function and metabolism
CO6	Covers Nucleic acids structure, properties and metabolism

BTS-105: BIOSTATISTICS (Soft core)

CO1	Understand various application area of biostatistics
CO2	Understand different types of data and sampling techniques
CO3	Students gain knowledge about Bio-statistics, basic concepts, data types, Properties of the data
CO4	Understand Probability, Statistical Inference, Statistical package
CO5	Identify appropriate tests to perform hypothesis testing and experimental design for biological
	experiment and interpret the output adequately.

BTH-201: BIOCHEMICAL TECHNIQUES AND ENZYMOLOGY

CO1	Students get hands on experience of using Physical Techniques & Chromatographic Techniques.
CO2	Students will learn principles and applications of PAGE and SDS PAGE agarose gel electrophoresis.
CO3	Will understanding nomenclature, classification, chemical nature and properties of enzymes. Types of enzyme specificity. Strategies of purification of enzymes. Enzyme models.
CO4	Students will learn in detail Enzyme Kinetics and Mechanism of Enzyme catalysis.
CO5	To understand structure and mechanism of action of some important co-enzymes like NAD+, FAD, FMN, TPP, pyridoxal phosphate, lipoic acid, CoASH and vitamin B12.

BTH-202: MOLECULAR BIOLOGY

CO1	To understand the Structure and functions of different types of RNA.
CO2	To rigorously study Biochemical evidences for DNA as genetic material. Watson and Crick model of DNA, different forms of DNA.
CO3	Understand the mechanism of DNA replication and repair and Identify the significance of techniques used to study them.
CO4	Students will learn to correlate the mechanism of prokaryotic and eukaryotic transcription process and appraise the different types of RNA processing methods.
CO5	Students will understand to explore the mechanism of prokaryotic and eukaryotic translation and differentiate various types of gene expression regulation.

BTH-203: IMMUNOLOGY AND IMMUNOTECHNOLOGY

CO1	To develop the basic knowledge of Innate and acquired immunity, structure and functions of immune cells.
CO2	Students will learn to applying the knowledge of immunology in development of immuno-therapeutics and diagnostics.
CO3	To comprehensively understand the Structure and properties of antigens, antibodies. Generation of immunological diversity. Complement pathways and biological significance.

CO4	Understand Serum separation and serological reactions (a) agglutination (b) precipitation. Enzyme linked immunosorbant assay. Isolation of lymphocytes from peripheral blood
CO5	Understand the concept of structure and functions of MHC and HLA systems. Genetic control of immune response. Tissue transplantation.

BTH-204: ENVIRONMENTAL BIOTECHNOLOGY

CO1	Students will learn to assess the methods involved in isolation and screening of potential microorganisms for production of industrial bioproducts.
CO2	Understand and analyse the various metabolic pathways involved in biosynthesis of industrial products.
CO3	Students will understand how to apply the metabolic pathway engineering principles in improvement of primary metabolites production.
CO4	Understand to apply the principles of waste management to treat the effluents from bioprocess industries
CO5	To learn how to choose and manage appropriate metabolic pathway mechanism for secondary metabolite production.

BTS-205 BIOINFORMATICS

CO1	To develop the basic knowledge Computer Network and Programming Languages.
CO2	Students will learn to use bioinformatics tools and software to analyze DNA and protein sequence.
CO3	Understand to appling the database management system concept in manage the biological data
CO4	Get hands on experience of using online tools to analyze genome sequences.
CO5	Students will be able to write computer programs in various programming techniques to analyze bioinformatics data.

BTH 301 Plant and Agricultural Biotechnology

CO1	Students will learn various aspects of Plant tissue culture
CO2	To understand the plant transformation techniques
CO3	Students will understand the applications of antisense RNA technology
CO4	To understand the production of industrially important enzymes produced by plants
CO5	To gain a detailed knowledge about GM crops

BTH 302 Animal Biotechnology

CO1	To understand the basics of animal cell culture
CO2	Students will learn the various gene transfer techniques used for production of transgenic animals
CO3	Students will understand the both technical and ethical problems related to animal biotechnology
CO4	Students will comprehensively learn the good manufacturing and laboratory practices while handling animals
CO5	Students will learn about the detailed applications of animal biotechnology

BTH303 Genetic engineering

CO1	To comprehend various tools and techniques used in genetic engineering
CO2	Students will learn scientific methodologies used in gene modification
CO3	To understand applications of genetic engineering in biological research
CO4	Students will get detailed knowledge of methods of gene transfer
CO5	Students will comprehend different cloning strategies

BTO 304 Applied Biotechnology

CO1	Students will develop the strategic leadership and decision-making skills necessary in biotechnology
CO2	To appraise the current regulatory, quality control, and legal frameworks that impact biotechnology
CO3	Students will learn professional and scientific communication appropriate for biotechnology
CO4	Students will understand the basics and applications of biotechnology in different subjects
CO5	Students will comprehend the different methodologies and their application in biotechnology

BTP 305 Plant, Agricultural and Animal Biotechnology

CO1	Students will gain practical knowledge of plant tissue culture
CO2	Students will learn methods involved in plant genomic DNA isolation
CO3	Students will analyse the cell cytotoxicity and cell viability assays using animal cell lines
CO4	Students will understand the methods used for in vitro culture of animal cells
CO5	Students will learn mushroom culture techniques

BTP306 Genetic Engineering and Bioinformatics

CO1	Students will be able to perform basic genetic engineering experiments
CO2	Students can gain technical knowledge of DNA isolation, gene identification etc
CO3	Students will be able to perform different electrophoresis techniques in laboratory
CO4	Students will comprehend the concept and be able to apply the methods at biotechnology industries
CO5	Students will be able to perform and interpret the results of genetic engineering experiments

BTH-401: BIOPROCESS ENGINEERING

CO1	To comprehend the state of art of bioreactors, understand the need of bioreactors in various fields,
	learn the different product specific fermentation processes.
CO2	Understand and analyse the problem of selection of suitable bioreactor configuration.
	Understand and specify reactors used in industrial bioprocesses.
CO3	To understand and study the fermentation processes, kinetics and various parameters used to control
	the fermentation process.
CO4	To assimilate the different bioprocess techniques in downstream processing and to learn the
	production process of industrially important products.
CO5	To learn the different regulations related to the production of different bioprocess products.
	Understand the IPRs related to products of Biotechnology. Learn the requirements and needs for
	entrepreneurship.

BTH-402 MEDICAL BIOTECHNOLOGY

CO1	To understand the different modes of infection, symptoms, epidemiology and control of different microbial diseases in humans. To extensively study cancer, its biology and latest breakthroughs in cancer therapy.
CO2	To rigorously study human diseases, understand the biology and functions of different organs in the body.
	body.
CO3	Understanding the need of nanobiotechnology, drug delivery techniques and molecular therapeutics
	for the designing of drugs.
CO4	To analyse the drug development process, the requirements and approaches to find a potential drug.
CO5	To comprehensively learn the various regulatory bodies in clinical research, understand the process
	of clinical trials and the ethical issues raised in clinical research.

BTH-403 GENOMICS AND PROTEOMICS

CO1	To develop the basic knowledge of omics and their application in research.
CO2	Understand genome sequences, their organization and its structure. To understand the approaches in
	mapping and study the organisation of different genomes.
CO3	To comprehensively understand the functions of genomes and to study comparative genomics.
CO4	To analyse the needs of proteomics, various techniques and tools used in the study of proteomics.
CO5	Understand the concept of metabolomics, methods of analysing metabolites and its regulation.

DEPARTMENT OF BIOCHEMISTRY

MSc BIOCHEMISTRY SEMESTER - I

COURSE OUTCOME (THEORY&RACTICAL)

Biophysical and Bio - organic chemistry

CO1	Discuss fundamentals of biomaterials with emphasis on classification, chemistry and characteristics
CO2	Elaborate the methods of stereochemistry, and thermodynamics law
CO3	Analyze the mechanism of Bio-organic reactions
CO4	Gain an understanding the basic elements and fundamentals of biochemistry
CO5	Discuss fundamentals of biomaterials with emphasis on classification, chemistry and characteristics

Biomolecules

CO1	Easily understand the basic concepts/functions of solutes, chemical bonding and organic compounds. Describe the classification of biomolecules
CO2	Describe the basic reaction types and mechanisms of bio molecules. Understand the structures and functions of biomolecules
	Tunctions of biomolecules
CO3	Analyse and study the chemical and biochemical properties of bio molecules
CO4	Understand relationships between biological molecules and human health. Identify biomolecules
	structural differences and its properties
CO5	Gain an understanding the basic principle of chemistry as well as biology. Understand the scope of
	biological chemistry Easily understand the interrelationship of organic compounds and homeostasis
	in biological organisms

Analytical Biochemistry

	indij vedi Divenenisti j	
CO1	Demonstrate broad knowledge in modern analytical instrumentation with deep knowledge in its core concepts and its applications. Acquire knowledge about the cell culture techniques, and Various	
	extraction methods.	
CO2	Understand the principle, Instrumentation of different types of Light microscopy, electron	
	microscopy Florescence microscope, fluorescence recovery after photo bleaching (FRAP),	
	Fluorescence resonance energy transfer (FRET), and its applications in various fields of research.	
CO3	Acquire knowledge about the basics and latest developments in the instrumentation techniques of	
	Centrifugation, flow cytometry, filtration, dialysis and their applications in various research fields.	
CO4	Demonstrate skill to explain about principle, BioCalorimetry and Radioactivity principles,	
	measurement method and its biological applications.	
CO5	Study applications of statistical tools like Mean, Median, Mode, Standard deviation, Standard	
	error, 't' test and ANOVA in biological research.	

General Physiology

CO1	Understand the inter relationships within and between anatomical and physiological systems of the
	human body
CO2	Describe the structure of major human organs and explain their role in the maintenance of healthy
	individuals. Understand the role of Membranes and its transport mechanism
CO3	Know in detail about the 4 levels of biological tissues. Describe the general function of each organ
	system.
CO4	Explain how the activities of organs are integrated for maximum efficiency. Have in-depth
	understanding of anatomy and physiology of respiratory, digestive, and vascular system
CO5	Have in-depth understanding of anatomy and physiology of muscle physiology

Nutrition

CO1	Acquire knowledge about the Basic nutrient elements like carbohydrate, Protein, Lipids, Macro,
	micro and trace elements.
CO2	Understand the inter relationships within and between the nutrient element with macro and micro
	molecules.

(PRACTICAL PAPERS) OUTCOME Gen. Biochemistry – I

CO1	The students will learn to perform the calibration of buffer, Saponification, acid value, peroxide
	value, iodine number
CO2	The students will learn to find out to isolate the components (casein, starch and glycogen) from the
	sample source.

Gen. Biochemistry –II

CO1	The students will learn to estimation of reducing sugars
CO2	The students will learn to estimation of protein, inorganic phosphates
CO3	The students will learn the method of Isolate different amino acids and nucleic acid.

II-SEMESTER

Enzymology

CO1	Distinguish the fundamentals of enzyme properties, nomenclatures, characteristics and mechanisms. Apply biochemical calculation for enzyme kinetics.
CO2	Discuss the factors affecting enzymatic reactions. Describe the concepts of co-operative behaviour, enzyme inhibition and allosteric regulation.
CO3	Compare methods for production, purification, characterization and immobilization of enzymes.
CO4	Describe the major applications of enzymes in industry, understand the principles of enzyme immobilisation techniques and enzyme extraction procedures.
CO5	Discuss various application of enzymes that can benefit human life
CO 6	Discover the current and future trends of applying enzyme technology for the commercialization purpose of biotechnological products.

Analytical Biochemistry II

CO1	Demonstrate broad knowledge in modern analytical instrumentation with deep knowledge in its core
	concepts and its applications
CO2	Acquire knowledge about the basics and latest developments in the techniques of Chromatography,
	Electrophoresis (IEF, 2D PAGE) and immuno Electrophorosis and their applications in various
	research fields
CO3	Demonstrate skill to explain about principle, and applications of latest spectroscopy techniques like
	CD, LD, IR, NMR, ESR and Mass spectroscopy.
CO4	Gain the knowledge in the current trends of proteonomic and Bioinformatics
CO5	Learn about primary and secondary databases of nucleic acids and proteins(Swissport, FASTA,
	Pubmed, Medline & NCBI)

Metabolism-I

CO1	Discuss the overall concept of cellular metabolism – anabolic and catabolic pathways, energy
	storage and release, production of building blocks for macromolecule synthesis
CO2	Differentiate how various organs control metabolism.
CO3	Explain glucose homeostasis (pathways and hormonal regulation). Discuss Krebs cycle, electron
	transport, and the pentose phosphate pathway
CO4	Develop a basic understanding of biochemical events associated with structural arrangement of plant
	cell and organization.
CO5	Explain and understand the biochemistry of photosynthetic process and mechanism of Nitrogen
	fixation

Membrane Biochemistry

CO1	Describe the origin of life, from the abiotic world to multicellular organisms, including an account of
	endosymbiosis
CO2	Explain the structure, properties and functions of various classes of macromolecules in cells
CO3	Describe the intricate relationship between various cellular organelles and their functions
CO4	Enumerate the structure and functions of the plasma membrane
CO5	Explain membrane physiology to include transport mechanisms, membrane potentials and action
	potentials

Microbiology

CO1	Demonstrate various classes and structure of microbes. Applications of microbes in food industry and
~~	pharma industry
CO2	Discuss preparation and applications of products from industries. Role of microbes in nitrogen
	fixation, purification of water
CO3	Learn and understand the basics of mycology and Production of mutants and their characterization
CO4	Learn about Bacterial toxins, and mode of action of bacterial protein toxins. Host Microbe
	Interactions, Viruses of bacteria, plant and animal cells, Mycoplasma and viriods

(PRACTICAL PAPERS) COURSE OUTCOME

Biochemical and Immunochemical Techniques

CO1	Learn how to standardize various biomolecules
CO2	Separate carbohydrates and amino acids by paper, TLC and columnchromatography
CO3	Separatecompound by electrophoresis
CO4	Practically learn and understand the antigen-antibody interaction by Double Immunodiffusion
	method, Ouchterlony's Method, Immunoelectrophoresis, Western Blotting and ELISA

Enzymology

CO1	Perform assay of clinically important enzyme: serum alkaline phosphatase, serum creatine
	phosphokinase and serum acid phosphatase, and the factors affecting enzyme activity and
	determination of Km.

III-SEMESTER

Molecular Biology-I

CO1	Acquire knowledge about nucleic acid as genetic information carriers, Possible modes of
	replication, and roles of helicase, primase, gyrase, topoisomerase, DNA Polymerase, DNA ligase,
	and Regulation of replication
CO2	Understand the detailed mechanism and regulation of Eukaryotic DNA replication, along with
	Mitochondrial and hloroplastic DNA Replication
CO3	learn about mechanism and regulation of transcription in prokaryotes along with Reverse
	transcription
CO4	Understand the classes of DNA sequences, Genome-wide and Tandem repeats, Retroelements,
	Transposable elements, Centromeres, Telomeres, Satellite DNA, Minisatellites, Microsatellites;
	applications of satellite DNA and Split genes

Molecular Physiology

CO1	learn about structural organization of Cell, transport across cell membrane, exocytosis, receptor mediated endocytosis, protein trafficking in cells, Protein sorting, vesicular Transport and protein
	targeting
CO2	learn about cell division: mitosis and meiosis; Cell cycle: check points, role of cyclin and cyclin
	dependent kinases in cell cycle regulation
CO3	Learn about primary and secondary messenger and signalling pathway
CO4	learn about Cancer - Causes, types, diagnosis, signaling pathways and its mechanism of action
CO5	Learn about Plant hormones and its mechanism of action

Metabolism-II

CO1	learn amino acid metabolism and its association with cellular energy production
CO2	learn Lipid biosynthesis, Degradation of fatty acids and cholesterol, ketone bodies, acidosis, ketosis
CO3	learn and understand about the Biosynthesis of purines and pyrimidine nucleotides, degradation of
	nucleotides, salvage pathways

Plant physiology

CO1	Understand the structure, biosynthesis and mechanism of action of major plant hormones, plant
	growth regulators, and photoreceptors in higher plants
CO2	learn about the secondary plant metabolism, biosynthesis and function of major secondary plant
	product classes like terpenoids, alkaloids and flavonoids etc.
CO3	learn about nitrogen metabolism, mechanism of nitrate and nitrite reduction, and fixation of nitrogen
CO4	Gain knowledge electron transport in higher plants and its relation with the carbon fixation
	pathways, Light regulation of photosynthetic enzymes, Calvin cycle, CAM, C4 pathways, and
	photorespiration

Cyber space- Open Elective

CO1	Learn basic components of information technology
CO2	Understand the interface of the components, roles and their difference
CO3	Study the back end of the system in database security issues
CO4	Grasp the knowledge in networking components with its architecture and protocols
CO5	Know the standards for security in the cloud environment

(PRACTICAL PAPERS) COURSE OUTCOME

Clinical Biochemistry

CO1	Gain knowledge of biological samples and their collection procedures
CO2	Perform biochemical laboratory analysis in blood and urine samples and interpret the generated
	results after analysis in order to determine the likely diagnosis
CO3	Assess presence and absence of normal and abnormal constituents in urine by performing qualitative
	urine analysis
CO4	Determine activity of enzymes such as creatine kinase, LDH, SGOT and SGPT
CO5	Determine blood urea, uric acid and creatinine which acts as renal indices
CO6	Analyze serum for Glucose, cholesterol, Bilirubin and A/G ratio

Molecular Biology

CO1	Understand the basic principle involved in isolation of biomolecules from various biological sources
CO2	Isolate DNA from various sources – viz plant, microbes and animals
CO3	Purify DNA, RNA, Separate DNA, RNA, Separating Proteins by SDS PAGE
CO4	Understanding the mobility differences of macromolecules in electrophoresis
CO5	Able to handle RT- PCR

IV-SEMESTER

Molecular Biology-II

CO1	Understand the synthesis of DNA and Post replication processes
CO2	Understand the synthesis of RNA and post transcriptional modifications
CO3	Understand the synthesis of protein and its post translational modification
CO4	Describe the molecular mechanisms behind DNA damage and repair
CO5	Describe and compare different molecular mechanisms to bring about cell death and explain how this is linked to DNA damage
CO6	Explain how molecular defects in a cell can lead to its development into a cancer cell

Biochemical Genetics

CO1	learn and understand the Genome organization, Cytogenetics, Genetic Control of Development
CO2	Understand the basics of heredity population genetics and master fundamental genetic calculation
CO3	learn and understand the Principles of Mendelian inheritance, Linkage and genetic mapping; Extrachromosomal inheritance, Sexlinked inheritance and genetic disorders, Somatic cell genetics, Population genetics
CO4	learn and understand the Human Genome Project, Gene therapy, Genetic Testing, and Genetic Counseling

Biotechnology

CO1	Explain the general principles of generating transgenic plants, animals and microbes
CO2	learn about the basic concept of Plant Biotechnology and applications in agriculture like micro-propagation, haploid plants, embryo culture, hybrids, cybrids etc
CO3	Understand the role of vectors, plasmids in gene technology
CO4	Understand the gene transfer methods
CO5	Understand the DNA sequencing methods

Immunology and Toxicology

CO1	Learn the classification of immunity, cell mediated immune response, humoral immune response
CO2	Gain the knowledge of structure, types of antigens and antibodies
CO3	Elaborate the method of monoclonal antibodies synthesize and various theories adopted for production of antibody.
CO4	Learn about the different types of vaccines synthesized and applications
CO5	Explore knowledge on autoimmune disorder, hypersensitivity and its types
CO6	Understand the basic concepts of pharmacy - ED50, LD 50 and drug metabolism

(PRACTICAL PAPERS) COURSE OUTCOME

Genetic Engineering and Protein Chemistry

CO1	practically learn to isolate plasmid DNA and genomic DNA from E. coli and will learn to perform
	Agarose gel electrophoresis of DNA
CO2	learn Restriction digestion of DNA and its application in cloning and to perform PCR
CO3	learn and understand the Blotting technique
CO4	Learn Enzyme isolation, purification and determination of its activity

Project Work

CO1	To develop synopsis of a defined research problem
CO2	To conduct the bench work
CO3	To prepare the research report and its oral demonstrations.

PG DEPARTMENT - MBA

Program outcome

PO1	To equip the students with required tools and techniques for improving their decision making skills and
	inventive thinking.
PO2	Students will gain the skills required to navigate through the complexities of managing data, to identify
	financial challenges, innovation ideas, addressing the challenges of organizational management and aware
	of alternative to jobs.
PO3	Students of the management program are trained for changing environment in a social and global context
	and practical approach to problem solving and function effectively as skilled managers.
PO4	Students get prepared to work in multicultural and multidisciplinary teams for effective problem solving
	and understand the principles of group dynamics, team work and growth of management profession.

Program specific outcome

PO1	To develop and apply fundamental management skills through practical knowledge for supporting
	business and management decisions through multidisciplinary techniques
PO2	To develop and nourish leadership skills, team building and team player qualities to accomplish
	organizational goals
PO3	Cultivating and promoting entrepreneurial skills with ethics, social and environmental commitment for
	sustainable business practices in micro and macro business atmosphere.

COURSE OUTCOME - I MBA

Economics for managers

CO1	Introduction to managerial economics and various economic theories and principles
CO2	Understanding of demand analysis and consumer behavior
CO3	Insight to theory of production and analysis of cost
CO4	Determination of price and output
CO5	Factor market and factor pricing
CO6	Macroeconomic analysis and policy

Organizational behavior

CO1	Introduction to organization behavior meaning, benefits and ob. as an inter-disciplinary subject
CO2	Learning about personality, learning process, attitude and values
CO3	Understanding motivation, theories of motivation, team building & group dynamics, leadership theories
CO4	Study of conflict and its types
CO5	Study of culture, discipline and organizational effectiveness
CO6	Study of change and organizational development

Accounting for managers

CO1	Conceptual basis for accounts, fraud and ethical issues in accounting
CO2	Orientation to financial statements, accounting concepts and conventional and gap
CO3	Measuring and reporting assets, liabilities and equity
CO4	Analyzing and interpreting financial statements
CO5	Orientation to cost accounting
CO6	Insight to contemporary issues in accounting

Statistics for management

CO1	Role and applications of statistics in managerial decision
CO2	Time series analysis, concept, additive and multiplicative models
CO3	Concept of probability and its uses in business decision - making
CO4	Introduction to sampling distributions, sampling distribution of mean and proportion
CO5	Estimation theory and hypothesis testing
CO6	Chi-square test for single sample standard deviation and decision theory

Marketing for customer value

CO1	Essentials of marketing, importance and core marketing concepts
CO2	Creating/choosing customer value, satisfaction and loyalty
CO3	Designing customer value through products and pricing strategies
CO4	Delivering customer value, market logistics, supply chain management
CO5	Communicating customer value through mass communication and digital platform
CO6	Sustaining growth and customer value, managing holistic marketing organization

Business and industry

CO1	An overview of Indian economy, performance and recent trends
CO2	Study of essentials of business & industry
CO3	Evolution of business & industry in India from British raj, swadeshi movement, post-independence, license raj and lpg era
CO4	Structure and status of business & industry in India
CO5	Growth of business & industry
CO6	Interface with voluntary organizations

Communication skills

CO1	Communication in business and its forms
CO2	Oral communication skills through telephonic, video and Skype, group discussion
CO3	Written communication skills through commercial letters, e-mail messages, job applications & resume writing
CO4	Listening skills, active and empathic listening, listening and judgment
CO5	Interpersonal communication skills, conditions of negotiating, types and sources of conflicts

COURSE OUTCOME - II MBA

Technology for management

CO1	Study on introduction of a computer system, overview and types network topologies, computer security
CO2	Insight to conceptual and detailed designs of MIS
CO3	Information system analysis, design, system testing, hard ware, software and documentation & its tools
CO4	Information on system implementation strategies and process
CO5	Working of e-commerce and ERP systems
CO6	Introduction to OS and office software and internet protocol

Managerial research methods

CO1	Introduction to learning of management research, types, purpose and process
CO2	Identification of research problem, research hypothesis and research design
CO3	Data collection and measurement concepts like questionnaire design, pilot test, primary & secondary data
CO4	Understanding the concept of sample data preparation
CO5	Data analysis and procedure for testing of hypothesis
CO6	Research report writing, types and structure

Entrepreneurship and ethics

CO1	Study of entrepreneurship in the new millennium and entrepreneurship role in economic development
CO2	Opportunity assessment, sources of finance for new venture and reasons for venture failure
CO3	Learning of feasibility analysis and crafting business plan
CO4	Introduction to legal forms of entrepreneurial organizations, legal environment
CO5	Introduction, perspective of social entrepreneurship with few experiments
CO6	Insight to business ethics, CSR, environmental awareness and ethical leadership by entrepreneurs

Human capital management

CO1	To enlighten the students on the principles and practices of HR as a capital factor
CO2	Insight on human capital planning and employee hiring
CO3	Study on HR development & contemporary HRD practices
CO4	Introduction to performance management system and appraisals
CO5	Compensation management and employee relations, trade union and their relevance
CO6	Study of strategic HRM and business performance

Financial management

CO1	To provide the concepts and foundations of managing finance in business enterprises
CO2	Equipping students with time value of money concepts
CO3	Long term financing decisions, leverages types and measurement
CO4	Long term investment decisions and its methods
CO5	Insight to short term financing and investment decisions
CO6	Study of dividend decisions and its types

Quantitative techniques and operation research

CO1	To impart knowledge in concepts and tools of or and QT
CO2	Study of importance of transportation, terminologies, methods like NWCM, LCM & VAM to find
002	feasible solution
CO3	Insight to assignment, importance of its problems, sequencing - terminologies and notations
CO4	Understanding the network analysis of pert and CPM techniques
CO5	Theory of games and description of queuing models
CO6	Exposure to simulation models like monte carlo using random numbers and replacement models

Innovation management

CO1	To impart skills of innovation and enable students to think and act on innovation
CO2	Application of innovation and its techniques
CO3	Marketing of innovation products and strategic considerations on innovations
CO4	Understanding of evaluation of innovation and its legal aspects
CO5	Insight about innovation in reality and innovation for problem solving

COURSE OUTCOME

Master of Commerce

I SEMESTER

MONETARY SYSTEMS

CO 1	Understanding monetary system of an economy intended to provide knowledge on: Various
	financial institutions- financial and capital markets, Money- volume of supply-significance,
	Methods of note issue ,Theories of money
CO 2	The learner obtains knowledge on how money supply cause inflation or impact of money supply on
	price level and acquires knowledge on factor pricing, control on volume of money supply,
	understanding role of financial institutions in business credit.

INTERNATIONAL BUSINESS ENVIRONMENT

CO 1	Apply the basic concepts, models, approaches and theories of international business in today's
	global environment.
CO 2	Measure significant pros and cons of globalization and roles of MNCs in the global business
	environment.
CO 3	Identify forms of financing and their implications in foreign trade.
CO 4	Assess the functional areas of business organization in international business environment.
CO 5	Determine the functional structure of the international bodies in facilitating economic integration
	and EXIM trade

PRINCIPLES AND PRACTICES OF BUSINESS DECISIONS

CO 1	To comprehend the basic characteristics of economic development and economic growth.
CO 2	Understand the sources of public finance, Attain the advantages and knowledge of public
	investments and other government expenditures, Understand the needs of public borrowing
CO 3	Understand supply and demand and the basic forces that determine equilibrium in a market
	economy
CO 4	Understand the concept of Production and Production Function, he meaning of Factors of
	Production, Short Run and Long Run
CO 5	Understand the framework that supports a set of pricing strategies

INFORMATION TECHNOLOGY FOR BUSINESS

CO 1	Explain the fundamental framework of information system and its application in organizations.
CO 2	Apply information system solutions in business operations. 3. Compile hardware software and
	network service of an enterprises.
CO 3	Develop database concepts and database management system software.
CO 4	Create business applications of data mining and warehousing to the decision-support level of
	organizations.

MANAGERIAL FINANCE

CO 1	Demonstrate the functions of finance and capital structure theories.
CO 2	Assess the concept of risk in capital budgeting decisions.
CO 3	Evaluate the dividend policy for corporate dividend decision.
CO 4	Design corporate restructuring under merger and acquisition.

GLOBAL TALENT MANAGEMENT

CO 1	Develop an understanding of the concept of human resource management and its relevance in
	organizations.
CO 2	Relate the principles and practices to staffing, job analysis, training, recruitment and selection,
	performance appraisal, compensation, and compliance with human resource requirements.
CO 3	Elaborate the areas of concern in employee welfare, health, safety, and industrial relations.
CO 4	Discuss the need for HR evaluation and ethical issues in HRM functions.
CO 5	Explain broad range of issues and challenges faced by MNCs in their IHRM activities.

CORPORATE COMMUNICATION SKILLS

CO 1	Recall communication theories and assess their relationship to Corporate Communication
	practices. Measure the value and efficacy of interpersonal communication skills in various
	business operations.
CO 2	Analyse the importance of communication functions including media, community, employee,
	government, customer and investor relations.
CO 3	Utilize applications of Social Media platforms in business communications.
CO 4	Assess the relevance of listening skills in effective communication.
CO 5	Measure the value and efficacy of interpersonal communication skills in various business
	operations

II SEMESTER

MODERN INDIAN BANKING

CO 1	To familiarize the students about the role of monetary and credit policy
CO 2	To make them well acquainted with IRAC norms and securitization act
CO 3	To understand BASEL II and III norms
CO 4	To learn about innovations in the new era. To make them understand about prudential norms, the
	different banking institutions

RISK MANAGEMENT AND DERIVATIVES

CO 1	Understand the concept of various derivative products such as futures, options, and swaps
CO 2	To apply hedging models in assessing price risk of derivatives
CO 3	To analyse and estimate value at risk for various derivatives
CO 4	To comprehend various derivative products and their performance in Indian and Global Markets

ADVANCED RESEARCH METHODOLOGY

CO 1	Apply the basic concepts, principles and techniques of scientific methodology in business research.
CO 2	Formulate research schema for business research and identify the application of measurement and
	scaling techniques in business research.
CO 3	Build analytical skills to apply various statistical tools for testing, analysing and interpreting the
	survey data
CO 4	Select appropriate parametric and non-parametric tests for testing the research hypotheses and
	analysing the sample data.
CO 5	Compile the art of drafting and writing the research report.

DIGITAL MARKETING

CO 1	Explain emerging trends in digital marketing and critically assess the use of digital marketing tools
	by applying relevant marketing theories and frameworks
CO 2	Articulate the value of integrated marketing campaigns across SEO, Paid Search, Social, Mobile,
	Email, Display Media, Marketing Analytics
CO 3	Recognize Key Performance Indicators tied to any digital marketing program.

EMERGING TRENDS IN ENTREPRENEURSHIP

CO 1	Discover the dynamics of the entrepreneurial world and the role of government in encouraging
	entrepreneurships
CO 2	Identify and discuss the potential of small scale industries in the development of the economy
CO 3	Analyse the business environment in order to identify business opportunities
CO 4	Design viable business plan considering the various aspects of feasibility and discuss common
	pitfalls

INDIAN ETHOS AND LEADERSHIP

CO 1	Understand the Indian ethos and its application in managerial practices
CO 2	Understand the importance of work ethos, values and its impact on stake holders
CO 3	Concept and Significance of leadership and communication skills in business
CO 4	Understand stress management techniques and its importance

ARTIFICIAL AND BUSINESS INTELLIGENCE

CO 1	Understand Artificial Intelligence based applications to enhance business process.
CO 2	Understand and describe the fundamentals of business intelligence
CO 3	Implement the process of business intelligence to make better business decisions

III SEMESTER

INTELLECTUAL PROPERTY RIGHTS

CO 1	Identify different types of Intellectual Properties (IPs), the right of ownership, scope of protection as
	well as the ways to create and to extract value from IP
CO 2	Recognize the crucial role of IP in organizations of different industrial sectors for the purposes of
	product and technology development.
CO 3	Identify activities and constitute IP infringements and the remedies available to the IP owner and
	describe the precautious steps to be taken to prevent infringement of proprietary rights in products and
	technology development.

LOGISTICS AND SUPPLY CHAIN MANAGEMENT

CO 1	Acquire the basic knowledge of logistics and supply chain management.
CO 2	Interpret the various technologies used in logistics and supply chain management.
CO 3	Explain the sectors associated with logistics and supply chain management.
CO 4	Interpret the procurement and different structure of procurement

CORPORATE REPORTING AND PRACTICES

CO 1	Apply the international accounting standards and Indian accounting standards in the preparation of
	financial statements of a company.
CO 2	Illustrate the new accounting standards and treatment for reporting the financial performance of
	business combinations.
CO 3	Compile the consolidated financial statements and income statements of a group and its subsidiaries.
CO 4	Discuss the new accounting treatment for industry based standards.

STRATEGIC COST MANAGEMENT

CO 1	Familiarize with the various pricing strategies in decision making. Explain the role of total quality
	management in improving the organisational performance.
CO 2	Describe some of the techniques and process of transfer pricing which are available to assist
	managers in taking decisions.
CO 3	Understand and application of the concept of learning curve
CO 4	Provide knowledge about balanced score card and bench marking.

CORPORATE TAX PLANNING

CO 1	To provide understanding of Direct Taxes including rules pertaining there to and their application to
	different business situations.
CO 2	Understand the procedure of assessment of company
CO 3	Tax planning and management in respect to amalgamation, mergers, and understand the concept of tax
	avoidance, evasion and double taxation, tax haven
CO 4	Corporate restructuring, issue of bonus shares, leasing, replacement and transfer pricing
CO 5	Exposure to tax payments through eTDS, eFilling of Tax returns and assessment, insight to CBDT
	settlement commission, refunds and revisions

IV SEMESTER

BUSINESS ANALYTICS

CO 1	Analyse the business data through various statistical techniques
CO 2	Communicate mathematical ideas effectively both in oral and written form
CO 3	Use a variety of visual models for representing the results of analysis
CO 4	Apply basic business analytics techniques to business problems

FORENSIC ACCOUNTING AND AUDITING

CO 1	Examine the knowledge and skills required to perform forensic accounting
	services
CO 2	Evaluate issues relating to professional ethics and responsibilities in forensic
	accounting.
CO 3	Integrate knowledge of relevant legal principles, rules, and processes with
	forensic accounting practice
CO 4	Assess types of fraud activity and methods of fraud prevention, detection, and
	response, including bankruptcy fraud.
CO 5	Evaluate techniques used to prevent and detect fraudulent financial reporting.

CORPORATE REPORTING PRACTICES- II

CO 1	To familiarise the students International financial reporting standards
CO 2	To study types of mergers, methods of accounting, Accounting for investment
	subsidiary
CO 3	To learn group financial statements/consolidated financial statement
CO 4	To study accounting for industry based standards

STRATEGIC COST MANAGEMENT -II

CO 1	Evaluate the contexts in which management accounting operates within an
	organization and its link to the external environment.
CO 2	Compile management accounting techniques to draw reasoned conclusions.
CO 3	Summarize the different costs and pricing strategies for decision making
	purposes.
CO 4	Compute total cost using activity based costing and compare it with traditional
	costing method

CUSTOMS DUTY AND GST

CO 1	Apply GST rules in taking managerial decisions in tax related matters
CO 2	Assess GST using the concepts of time, place, and value of supply.
CO 3	Estimate input tax credit by using different provisions of the act.
CO 4	Outline the provisions concerned with payment of tax, interest, TDS, Refund
	and Returns
CO 5	Appraise the offenses and penalty governed by GST Law of India

CO-PO ATTAINMENT

Program outcomes (POs) and Program specific outcomes (PSOs) of MSc. Biotechnology

Program outcomes (POs):

PO1: Knowledge: Understand the basic knowledge and concepts of biotechnology and other interdisciplinary subjects.

PO2: Skills: Ability to apply their knowledge and perform experiments independently.

PO3: Real time exposure: Practical exposure to the basic and the advanced fields of Biotechnology.

PO4: Advanced skills and research: Gain practical knowledge about advanced subject in the area of nanobiotechnology, multi omics, immunotechnology, environment, animal, plant and agriculture biotechnology.

PO5: Career and Employment: Advancement of their professional career and employment in diverse areas of biotechnology.

Program specific outcomes (PSOs):

PSO1: To understand and analyze the basic concepts of cell biology, Genetics, Biochemistry, Molecular biology and bioinformatics.

PSO2: The program will impart Knowledge among students in the advanced fields of Biotechnology and its applications in various sectors.

PSO3: Apply the knowledge and skills to develop quality products and provide solution in the field of plant and agriculture biotechnology, Environmental Biotechnology, Nanobiotechnology, Industrial Biotechnology, and many other areas involved in biotechnology industries.

PSO4: Able to Perform experimental procedures and research independently in the areas of Biochemistry, Molecular biology, Plant tissue culture, Genetic Engineering, Molecular Ecology, Molecular marker Technology and Bioinformatics.

PSO5: Analyse the complex problems in different areas of Biotechnology and address the issues through use of modern tools and techniques in biotechnology.

Attainment of course outcomes (COs):

The course outcomes (COs) are defined for each course under the given program. The defined Cos are mapped to Pos and PSOs of the respective program. Assessment for course outcomes (COs) is carried out by each department for different programs regularly. The COs are mapped

against each question of the internal examination and CO analysis is carried out by faculty of each course. The contribution of COs is assessed by mapping them in term of low, moderate and high level, for the attainment of POs/PSOs. Data from all theory courses, practical courses and project courses were collected and are considered for course outcome (CO) attainment calculation. For each courses of post graduate except project course 30% weightage was given for internal assessment and 70% weightage was given for external assessment.

Assessment methods for Theory, Practical and Project courses:

CO Attainment (Theory courses)			
Assessment methods	Weightage	Overall Weightage	
IA test1, IA test2, Assignment, seminar, attendance	30%	100%	
Semester end theory examination	70%		

CO Attainment (Practical courses)		
Assessment methods	Weightage	Overall Weightage
Continuous assessment, model examination, Lab records, attendance	30%	100%
Semester end practical examination	70%	

CO Attainment (Project courses)		
Assessment methods	Weightage	Overall Weightage
Performance in project, Project Presentation, Publication	60%	
Viva Voce	40%	100%

Theory Courses:

Internal Assessment (30%): IA test1, IA test2, Assignment, seminar, attendance

External Assessment (70%): Semester end theory examination

Practical courses:

Internal Assessment (30%): continuous assessment, model examination, Lab records, attendance

External Assessment (70%): Semester end practical examination

Project courses: External Assessment: Performance in project, Project Presentation and Viva Voce

Semester end theory examination:

The examination is carried out by Bangalore University by the end of each semester. The exam is conducted for 100 marks with the duration of 3 hours. Evaluation is carried out at the valuation center set by the University by the qualified panel of examiners. The results are published online. The marks scored by the students are considered for calculation of CO attainment for each course.

Semester end practical examination:

For each practical course the examination is conducted for 4 hours. The examination includes performance, observation, viva voce, record submission. The marks are awarded by the external examiners allotted by the University. The final marks scored are considered for CO attainment for each course.

Project course:

Project course is allotted in the final semester of the program. Each student is given with a unique project topic. At the end of the project student needs to submit the report to the University for assessment. Students also need to present the entire work done before the external examiners allotted by the University. Marks are awarded based on the project performance, presentation and viva voce. The final marks are considered for overall CO attainment.

The attainment levels are scored as below:

Attainment level 1: 50% to 60 % students scoring greater than 60% marks

Attainment level 2: 60% to 70 % students scoring greater than 70% marks

Attainment level 1: 70% to 80 % students scoring greater than 80% marks

Course allotment	Course Title	Course Code	
Theory	CELL BIOLOGY	BTH-101	

Course Outcomes (COs):

- 1. Student is able to understand and apply the Knowledge of basic characteristics of the cell
- 2. Student is able to understand and apply the Knowledge of Cytoskeleton
- 3. Student is able to analyze and apply the Knowledge of Membrane Transport

- 4. Student is able to analyze and apply the Knowledge of Cell signaling
- 5. Student is able to understand and apply the Knowledge of cell cycle
- 6. Student is able to analyze and apply the Knowledge of Specialized Cells (Muscle & Nerve cells)
- 7. Student is able to understand, analyze and apply the Knowledge of Antioxidant defense system and Senescence

CO PO Mapping:

Slight (Low) = 1, Moderate (Medium) = 2, Substantial (High) = 3.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	2	2	3	2
CO 2	3	2	3	3	3
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
CO 6	3	3	3	3	3
CO 7	3	2	3	3	3

CO-PSO Mapping:

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	2
CO 2	3	3	3	3	2
CO 3	3	3	3	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
CO 6	3	3	3	3	3
CO 7	3	3	3	3	3

Course allotment	Course Title	Course Code
Theory	Environmental Biotechnology	BTH- 204

- 1. Student is able to understand and apply the Knowledge of environment and monitoring
- 2. Student is able to analyze and apply the Knowledge of water Management and waste water treatment
- 3. Student is able to analyze and apply the Knowledge of Biomining & Biodiesel
- 4. Student is able to analyze and apply the Knowledge of Bioremediation
- 5. Student is able to understand, analyze and apply the Knowledge of Biowaste treatment
- 6. Student is able to understand, analyze and apply the Knowledge of Global Environmental problems

CO PO Mapping:

Slight (Low) = 1, Moderate (Medium) = 2, Substantial (High) = 3.

PO 1	PO 2	PO 3	PO 4	PO 5
3	3	3	3	3
3	3	3	3	3
3	2	2	3	2
3	3	3	3	3
3	3	3	3	3
3	3	3	3	3
	3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

CO-PSO Mapping:

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3	3	3	3
CO 2	3	3	3	3	3
CO 3	3	3	2	3	3
CO 4	3	3	3	3	3
CO 5	3	3	3	3	3
CO 6	3	3	3	3	3

Course allotment	Course Title	Course Code	
Theory	Human Physiology	101	

- 1. Student is able to understand and apply the Knowledge of basic tissues
- 2. Student is able to understand and apply the Knowledge of nervous system
- 3. Student is able to understand and apply the Knowledge of endocrine and Immune system
- 4. Student is able to understand and apply the Knowledge of Digestive, Cardiovascular, Respiratory and Excretory Systems
- 5. Student is able to understand and apply the Knowledge of Reproductive system

O PO Mapping:

Slight (Low) = 1, Moderate (Medium) = 2, Substantial (High) = 3.

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	2	2	2	2	2	2	2	2	2	2	2
CO 2	3	3	3	3	3	3	3	3	3	3	3	3
CO 3	3	3	3	3	3	3	3	3	3	3	3	3
CO 4	3	3	3	3	3	3	3	3	3	3	3	3
CO 5	3	3	3	3	3	3	3	3	3	3	3	3

CO-PSO Mapping:

Slight (Low) = 1, Moderate (Medium) = 2, Substantial (High) = 3.

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	2	2	2	2	2	2	2
CO 2	3	3	3	3	3	3	3
CO 3	3	3	3	3	3	3	3
CO 4	3	3	3	3	3	3	3
CO 5	3	3	3	3	3	3	3

Subject allotment	Course Title	Course Code	
Theory	Biochemistry	BTH-104	

Course Outcomes (COs):

1. Enables the students to understand the applications of thermodynamics in biology

- 2. Enables the students to understand the concept energy flow in the biological system and electron transport chain
- 3. Enables the students to understand the structural aspects and metabolism of carbohydrates
- 4. Enables the students to understand the concept of amino acids, structural organization and metabolism of proteins
- 5. Enables the students to understand the structure and metabolism of lipids.
- 6. Enables the students to understand the structure and metabolism of nucleic acids

CO PO Mapping:

Slight (Low) = 1Moderate (Medium) = 2 Substantial (High) = 3

CO/PO	PO1	PO2	PO3	PO4	PO5
CO 1	2	2	2	2	2
CO 2	2	2	2	2	2
CO 3	2	2	2	2	2
CO 4	2	2	2	2	2
CO 5	2	2	2	2	2
CO 6	2	2	2	2	2

CO-PSO Mapping:

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	2	2	2	2	2
CO 2	2	2	2	2	2
CO 3	2	2	2	2	2
CO 4	2	2	2	2	2
CO 5	2	2	2	2	2
CO 6	2	2	2	2	2

Subject allotment	Course Title	Course Code	
Theory	Enzymology And Biochemical Techniques-	BTH-201	

- 1. Enables the pupil to understand the physical techniques involved in the analysis of macromolecules
- 2. Enables the students to understand the techniques of chromatography
- 3. Enables the students to understand the techniques of electrophoresis
- 4. Enables the students to understand the basics of enzymes
- 5. Enables the students to understand the kinetic parameters and mechanism of action of enzymes.
- 6. Enables the students to understand the role of coenzymes in enzymatic reaction

CO-PO Mapping:

Slight (Low) = 1 Moderate (Medium) = 2 Substantial (High) = 3

CO/PO	PO1	PO2	PO3	PO4	PO5
CO 1	2	1	2	3	2
CO 2	3	2	2	2	2
CO 3	3	1	2	2	2
CO 4	3	2	2	1	2
CO 5	1	2	2	2	2
CO 6	1	2	2	2	2

CO-PSO Mapping

PSO1	PSO2	PSO3	PSO4	PSO5
2	3	2	2	2
1	3	2	2	2
2	2	2	1	2
2	2	2	2	2
2	2	2	2	2
2	2	2	2	2
	2 1 2 2 2	2 3 1 3 2 2 2 2 2 2	2 3 2 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 2 2 1 3 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2

Subject allotment	Course Title	Course Code
Practical	Enzymology And Immunology	BTP- 206

- 1. Enables the student to carry out the kinetic assay of salivary amylase
- 2. Enables the student to carry out the kinetic assay of urease
- 3. Enables the student to carry out the kinetic assay of acid phosphatase
- 4. Molecular weight determination of proteins by SDS PAGE.
- 5. Enables the students to carry out the purification of IgG
- 6. Enables the students to carry out the serological assays

CO-PO Mapping

Slight (Low) = 1 Moderate (Medium) = 2 Substantial (High) = 3

CO/PO	PO1	PO2	PO3	PO4	PO5
CO 1	2	3	3	2	3
CO 2	1	3	3	2	2
CO 3	3	2	2	3	3
CO 4	2	2	1	2	2
CO 5	2	2	2	3	2
CO 6	3	3	2	3	3

CO-PSO Mapping

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	2	2	2	2	3
CO 2	2	3	3	1	2
CO 3	2	2	2	2	2
CO 4	3	3	2	2	3
CO 5	3	3	3	3	1
CO 6	3	3	3	3	2

Subject allotment	Course Title	Course Code
Practical	General microbiology and Biochemistry	BTP-107

- 1. Estimation of carbohydrates
- 2. Estimation of amino acids and proteins
- 3. Estimation of inorganic phosphate
- 4. Determination of iodine value and acetyl value
- 5. Paper chromatography and TLC
- 6. Microbial culture techniques
- 7. Biochemical tests in microbiology
- 8. Staining techniques

CO PO Mapping:

Slight (Low) = 1 Moderate (Medium) = 2 Substantial (High) = 3

CO/PO	PO1	PO2	PO3	PO4	PO5
CO 1	3	3	2	3	2
CO 2	3	3	2	3	2
CO 3	3	3	2	3	2
CO 4	3	3	2	2	2
CO 5	3	3	2	3	2
CO 6	3	3	2	2	3
CO 7	3	3	2	3	3
CO 8	3	2	2	3	3

CO-PSO Mapping:

PSO1	PSO2	PSO3	PSO4	PSO5
3	2	3	2	2
3	2	2	2	2
3	2	2	2	2
3	3	2	2	3
3	3	2	2	3
3	3	2	3	3
3	3	2	3	2
3	3	3	3	3
	3 3 3 3 3 3	3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 2 3 3 2 2 3 2 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2	3 2 3 2 3 2 3 2 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Subject allotment	Course Title	Course Code
Theory	GENERAL MICROBIOLOGY	BTH-103

- 1. Students will learn microbial Classification
- 2. Students will be able define prokaryotic Micro-organisms (Properties, Structure & Reproduction)
- 3. Students will be able define eukaryotic Micro-organisms (Properties, Structure & Reproduction)
- 4. Students will be able to differentiate among Virus, Viroids & Prions
- 5. Students will be able to analyse microbial Growth and Control
- 6. Students will be able perform microbiological methods

CO PO Mapping:

CO / PO	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	2	1	2	2
CO 2	3	3	2	2	3
CO 3	3	2	3	2	2
CO 4	3	2	2	2	2
CO 5	3	2	2	2	2
CO 6	3	3	3	3	3
CO-PSO M	apping				
CO / PSO	PSO 1	PSO 2	PSO 3	PSSO 4	PSO 5
CO 1	3	3	2	3	3
	3	3 2	2 2	3 2	3 2
CO 2					
CO 1 CO 2 CO 3	3	2	2	2	2
CO 2 CO 3	3	2 2	2 2	2 2	2 2
CO 2 CO 3 CO 3	3 3 3	2 2 2	2 2 2	2 2 2	2 2 2

Subject allotment	Course Title	Course Code
Practical	General Microbiology And Biochemistry	BTP- 107

- 1. Students will learn the techniques of estimation of carbohydrates
- 2. Students will learn the techniques of estimation of amino acids and proteins
- 3. Students will learn the techniques of estimation of inorganic phosphate
- 4. Students will learn the techniques of determination of iodine value and acetyl value
- 5. Students will learn the techniques of paper chromatography and TLC
- 6. Students will learn the techniques of microbial culture techniques
- 7. Students will learn the techniques of biochemical tests in microbiology
- 8. Students will learn various Staining techniques

CO PO Mapping

Slight (Low) = 1 Moderate (Medium) = 2 Substantial (High) = 3

CO / PO	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	2	3	2
CO 2	3	3	2	3	2
CO 3	3	3	2	3	2
CO 4	3	3	2	2	2
CO 5	3	3	2	3	2
CO 6	3	3	2	2	3
CO 7	3	3	2	3	3
CO 8	3	2	2	3	3

CO-PSO Mapping:

CO / PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2	3	2	2
CO 2	3	2	2	2	2
CO 3	3	2	2	2	2
CO 4	3	3	2	2	3
CO 5	3	3	2	2	3
CO 6	3	3	2	3	3
CO 7	3	3	2	3	2
CO 8	3	3	3	3	3

Dr. Anuradha. M
Principal
Padmashree Institute of
Management & Sciences

CONSOLIDATED CO-PO ATTAINMENT

M.Sc. Biotechnology

Semester: 3

Course: Genetic Engineering

Course Code: BTH-303

Course Outcomes	CIE1	(IA)		Other sment)	SI	EE	Direct At	ttainment	Feed	back	Indirect A	ttainment	Total At	tainment
	Attainment out of three	Attainment out of 100	Attainment out of three	Attainment out of 100	Attainment out of three	Attainment out of 100	Attainment out of three	Attainment out of 100	Attainment out of three	Attainment out of 100	Attainment out of three	Attainment out of 100	Attainment out of three	Attainment out of 100
BTH-303.1	2.48	82.73	3	100	3	100	2.83	94.24	0.2	6.67	0.1	3.33	2.83	94.24
BTH-303.2	2.73	90.91	3	100	3	100	2.91	96.97	3	100	1.5	50	2.91	96.97
BTH-303.3	2.73	90.92	3	100	3	100	2.91	96.97	2	66.67	1	33.33	2.91	96.97
BTH-303.4	3	100	3	100	3	100	3	100	3	100	1.5	50	3	100
BTH-303.5	3	100	3	100	3	100	3	100	3	100	1.5	50	3	100

Dr. Anuradha. M
Principal
Padmashree Institute of
Management & Sciences